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The conference will focus on three key areas of machine learning. In the area of mathematical
theory, we will delve into the theoretical foundations and model building of machine learning,
understanding its deep structures from a mathematical perspective. In the area of scientific
applications, we will discuss how machine learning can solve complex scientific problems and how
methods from scientific computing can be used to develop new algorithms. In the area of engineering
applications, we will focus on how to translate machine learning research outcomes into practical
engineering practices to solve technical challenges, thereby driving technological innovation and

efficiency improvements.
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REEIERE =

Modeling LLLM Pre-Training Dynamics with Functional Scaling Laws
(R%, JEEXP

MEME: Understanding the pre-training dynamics of large language models (LLMs) is critically
important. However, traditional optimization theory fails to account for many intriguing phenomena
observed in LLM pre-training, including the emergence of scaling laws and the widespread adoption of
warmup—stable—decay (WSD) learning rate schedules. In this talk, we reveal a surprising alignment
between the loss curves of LLM pre-training and those of power-law kernel regression. Motivated by
this observation, we develop a theoretical framework of Functional Scaling Laws (FSL), which
accurately captures the loss dynamics through the central notion of intrinsic time. Remarkably, FSL

not only exhibits strong predictive power for LLM pre-training but also provides a principled approach
for explaining why certain learning rate schedules work so well in practice.

WENE A RAE, JERUREE R S E PRLEs = I Fo b 0 Bh IR R, R BT A
DR FE S S R . 2012 FEERNL T RIFFR2E, SREC 5 R 2 L2400 2018 AR
FAER K, R EHCAE A0, 2018 4E 11 A& 2021 4 10 H, So)a 7SS E W bRk
P HEAFERW R NEHLE R TAE. MIXHEIR AR T NeurlPS. ICML. AoS, JMLR 4%
[ BRI 2= 5 H T
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SEwE AL EE: BEEIHR

Al-1 Towards understanding the representation learning of diffusion models

ARk, iR

HE: Diffusion models (DMs) excel in generative modeling, but their theoretical foundations and limitations
remain underexplored. This talk addresses two key aspects: their feature learning dynamics and their ability to
capture hidden inter-feature rules. First, I show that the denoising objective encourages DMs to learn balanced
and comprehensive data representations, unlike classification models that prioritize easy-to-learn patterns.
Theoretical analysis and experiments on synthetic and real-world datasets highlight this distinction. Next, I
explore a critical limitation: DMs often fail to learn fine-grained hidden rules between dependent features, such
as the relationship between the height of the sun and shadow length in images. Empirical evaluations on models
like Stable Diffusion reveal consistent failures, supported by synthetic tasks and theoretical insights showing
that denoising score matching (DSM) is incompatible with enforcing rule conformity. I discuss potential
solutions, such as classifier-guided sampling, and their limitations. This talk provides a deeper understanding of

DMs’ strengths and weaknesses, offering insights for building more robust and interpretable generative models.

Al-2 HERWUH PR EEEE:. ZAASEIRHER

BR, Fi R

E: Transformer CCNHLA 7 2GS R &, £ RN AT BRI ARG M. HULEE
EIHUEIAAZ O RIMREER, o 7R B AR 0 J7 20 AR FAR DT B = UL h AR i e
TER RG], BATE JeB/R ¥ Z Transformer B8 WAl I i 16 B 1 P43 LA ISR, SEBLE R SO i
AT . Bl 5, FRATEHRHZE Transformer 75 2% > 48 fide 45 DL i U ELAT 2R i3 P (%) 42 A28 [ ) ]
EHIRETT. AN, ATERHE T B Transformer B8 7E 2 > AL E L R R I . X LEAIE 5T AR AZ O
TE T 4087 softmax H = AL WAEE I SRSl & B AR Bk 8. MRS R R R T Transformer A%}
2P MR TSR I R I He A M 1 R A

A1-3 Bridge theory to practice at scale: One-step gradient suffices for fine-tuning LLMs, provably and
efficiently

XN 77, University of Warwick

$E: In this talk, I will illustrate how theory can guide practice, through the lens of low-rank adaptation
(LoRA) for fine-tuning large language models. The results include three aspects: 1) Our theoretical results show
that LoRA will align to the certain singular subspace of one-step gradient of full fine-tuning. Hence, the
subspace alignment and generalization guarantees can be directly achieved by a well-designed spectral
initialization strategy for both linear and nonlinear models. 2) Our analysis leads to the LoRA-One algorithm, a

theoretically grounded algorithm that achieves significant empirical improvement over vanilla LoRA and its
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variants on several benchmarks by fine-tuning Llama 2. Additionally, our results also clarify some
misconceptions in previous algorithm design. Talk is based on https://arxiv.org/abs/2502.01235 (ICML'25 oral)

A1-4 Beyond Unconstrained Features: Neural Collapse for Shallow Neural Networks with General Data
BEH, LiGALRF

#E: Neural collapse (NC) is a phenomenon that emerges at the terminal phase of the training (TPT) of deep
neural networks (DNNs). The features of the data in the same class collapse to their respective sample means
and the sample means exhibit a simplex equiangular tight frame (ETF). In the past few years, there has been a
surge of works that focus on explaining why the NC occurs and how it affects generalization. Since the DNNs
are notoriously difficult to analyze, most works mainly focus on the unconstrained feature model (UFM). In this
work, we focus on shallow ReLU neural networks and try to understand how the width, depth, data dimension,
and statistical property of the training dataset influence the neural collapse. We provide a complete
characterization of when the NC occurs for two or three-layer neural networks. For two-layer ReLU neural
networks, a sufficient condition on when the global minimizer of the regularized empirical risk function exhibits
the NC configuration depends on the data dimension, sample size, and the signal-to-noise ratio in the data
instead of the network width. For three-layer neural networks, we show that the NC occurs as long as the first
layer is sufficiently wide. Regarding the connection between NC and generalization, we show the generalization
heavily depends on the SNR (signal-to-noise ratio) in the data. Our results significantly extend the state-of-the-
art theoretical analysis of the NC under the UFM by characterizing the emergence of the NC under shallow
nonlinear networks and showing how it depends on data properties and network architecture.
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A3-2 Physics-Assisted and Topology-Informed Deep Learning for Weather Prediction

&R, ke

$HE: Although deep learning models have demonstrated remarkable potential in weather prediction, most of
them overlook either the physics of the underlying weather evolution or the topology of the Earth's surface. In
light of these disadvantages, we develop PASSAT, a novel Physics-ASSisted And Topology-informed deep
learning model for weather prediction. PASSAT attributes the weather evolution to two key factors: (i) the
advection process that can be characterized by the advection equation and the Navier-Stokes equation; (ii) the
Earth-atmosphere interaction that is difficult to both model and calculate. PASSAT also takes the topology of
the Earth's surface into consideration, other than simply treating it as a plane. With these considerations,
PASSAT numerically solves the advection equation and the Navier-Stokes equation on the spherical manifold,
utilizes a spherical graph neural network to capture the Earth-atmosphere interaction, and generates the initial
velocity fields that are critical to solving the advection equation from the same spherical graph neural network.
In the 5.625-resolution ERAS5 data set, PASSAT outperforms both the state-of-the-art deep learning-based
weather prediction models and the operational numerical weather prediction model IFS T42.

A3-3 On the Complexity of Distributed Nonconvex Optimization

BT, 5 H R

FHE: We consider the incremental first-order optimization (IFO) for distributed nonconvex optimization. We
first revisit the problem setting in single machine scenario by distinguishing the difference between global and
mean-squared smoothness parameters. The key observation is that the optimal IFO complexity is indeed
achieved by the trade-off between variance reduction methods and classical gradient descent. We then design
the distributed algorithm by introducing the new sampling strategy that allows different mini-batch sizes on
different nodes. The theoretical analysis shows the IFO calls, the computational rounds, and the communication
rounds of our algorithms are near-optimal. We can extend our results to the problem with PL condition, which

also achieve the near-optimal upper complexity bounds.

A3-4 Distributed Learning over Arbitrary Topology: Linear Speed-Up with Polynomial Transient Time

B, oY GRID

FE: We study a distributed learning problem in which n agents, each with potentially heterogeneous local
data, collaboratively minimize the sum of their local cost functions via peer-to-peer communication. We propose
a novel algorithm, Spanning Tree Push-Pull (STPP), which employs two spanning trees extracted from a general
communication graph to distribute both model parameters and stochastic gradients. Unlike prior approaches that
rely heavily on spectral gap properties, STPP leverages a more flexible topological characterization, enabling
robust information flow and efficient updates. Theoretically, we prove that STPP achieves linear speedup and

polynomial transient iteration complexity under arbitrary network topologies.
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aeikd AS T BlEHLSES

A5-2 Bayesian Learning for Compact Dynamical Representations of Nonlinear Systems

R FR, Lund University (Sweden)

$E: Credible real-time simulation is a crucial enabler for digital twin technology, and data-driven model
reduction is a key approach to achieving it. In this talk, we will discuss non-intrusive Bayesian methods for
learning reduced-order representations of high-dimensional dynamical systems, with built-in probabilistic
quantification of modeling uncertainties to certify computational reliability. The core strategy involves using
Bayesian inference for the parametrization inspired by projection-based model reduction. Particularly, Gaussian
process approximations are leveraged to formulate differential-equation-constrained likelihood functions and
hence improve predictive performance, especially when training data are noisy and/or scarce. These techniques
have demonstrated their effectiveness in data-driven reduced-order modeling by delivering accurate temporal
predictions along with robust uncertainty quantification.
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A5-4 DeepSPoC: a deep learning based sequential propagation of chaos

JATTR, LI R

fZE: Sequential propagation of chaos (SPoC) is a recently developed tool for solving mean-field stochastic
differential equations and their related nonlinear Fokker-Planck equations. Based on the theory of SPoC, we
present a new method (DeepSPoC) that combines the interacting particle system of SPoC with deep learning. A
recently developed deep generative model called KRnet is used to store the empirical measure of particles in our
algorithm. Our method has computational complexity O(N) with respect to particle number and can also
significantly reduce the memory used to store particle trajectories. These two features make our method
applicable to the computation of complex high-dimensional problems that require simulations of large particle
systems. We apply our method to a wide range of different types of mean-field equation and verify its

effectiveness and advantages.
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NemE AT EE: NBEFEIERFHE (D

AT7-1 Rates for least squares using over-parameterized neural networks

B, Tl

FHEL: Recent studies showed that deep neural networks can achieve minimax optimal rates for learning smooth
function classes. However, most of these results require that the neural networks in use are under-parameterized,
which cannot explain the successes of over-parameterized models used in practice. In this talk, we will discuss
how to derive convergence rates for neural networks in the over-parameterized regime. We will begin with a
discussion on the approximation capacity of ReLU neural networks with certain norm constraints on the
weights. By using this result, we are able to prove nearly optimal learning rates for least squares estimations
based on over-parameterized (deep or shallow) neural networks if the weights are properly constrained. Finally,
we will also show how to obtain minimax optimal rates for shallow neural networks by using localization

technique and generalize the results to regularized least squares.

A7-2 Fourier Multi-Component and Multi-Layer Neural Networks: Unlocking High-Frequency Potential
TRALR, FHERL TR

$ZE: The architecture of a neural network and the selection of its activation function are both fundamental to
its performance. Equally vital is ensuring these two elements are well-matched, as their alignment is key to
achieving effective representation and learning. In this paper, we introduce the Fourier Multi-Component and
Multi-Layer Neural Network (FMMNN), a novel model that creates a strong synergy between them. We
demonstrate that FMMNNSs are highly effective and flexible in modeling high-frequency components. Our
theoretical results demonstrate that FMMNNSs have exponential expressive power for function approximation.
We also analyze the optimization landscape of FMMNNSs and find it to be much more favorable than that of
standard fully connected neural networks, especially when dealing with high-frequency features. In addition, we
propose a scaled random initialization method for the first layer's weights in FMMNNSs, which significantly
speeds up training and enhances overall performance. Extensive numerical experiments support our theoretical
insights, showing that FMMNNs consistently outperform traditional approaches in accuracy and efficiency

across various tasks.

A7-3 Distribution Matching for Self-Supervised Transfer Learning

I3k, UK

#HE: In this paper, we propose a novel self-supervised transfer learning method called Distribution Matching
(DM), which drives the representation distribution toward a predefined reference distribution while preserving
augmentation invariance. DM results in a learned representation space that is intuitively structured and
therefore easy to interpret. Experimental results across multiple real-world datasets and evaluation metrics
demonstrate that DM performs competitively on target classification tasks compared to existing self-supervised
transfer learning methods. Additionally, we provide robust theoretical guarantees for DM, including a
population theorem and an end-to-end sample theorem. The population theorem bridges the gap between the

self-supervised learning task and target classification accuracy, while the sample theorem shows that, even
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with a limited number of samples from the target domain, DM can deliver ex ceptional classification

performance, provided the unlabeled sample size is sufficiently large.

A7-4 Score-Based Sequential Langevin Sampling for Data Assimilation

B, IR

$E: In this presentation, we will introduce a deep learning approach for data assimilation. Grounded in the
Bayesian inference framework, we leverage denoising score matching to learn the prior distribution. This
method enables the explicit expression of the gradient of the log posterior, facilitating accurate predictions of the
new state by sampling from the posterior distribution. Through a series of numerical illustrations and theoretical

analyses, we will showcase the efficacy, superiority, and constraints of our innovative methodology.

A7-5 DRM Revisited: A Complete Error Analysis

R, DK

FE: Itis widely known that the error analysis for deep learning involves approximation, statistical, and
optimization errors. However, it is challenging to combine them together due to overparameterization. In this
paper, we address this gap by providing a comprehensive error analysis of the Deep Ritz Method (DRM).
Specifically, we investigate a foundational question in the theoretical analysis of DRM under the
overparameterized regime: given a target precision level, how can one determine the appropriate number of
training samples, the key architectural parameters of the neural networks, the step size for the projected gradient
descent optimization procedure, and the requisite number of iterations, such that the output of the gradient
descent process closely approximates the true solution of the underlying partial differential equation to the

specified precision?
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B2-1 Solving Bayesian Inverse Problems via Diffusion-based Sampling

B, UK

#E: Bayesian inverse problems are fundamental to image science and scientific computing, with posterior
sampling serving as the primary mechanism for quantifying solution uncertainty. Despite its importance,
sampling from complex posterior distributions in high-dimensional spaces remains computationally challenging.
This paper introduces a novel diffusion model-based algorithm for tackling high-dimensional nonlinear
Bayesian inverse problems, where the posterior score is estimated through denoising Langevin dynamics. We
provide theoretical guarantees for our method and demonstrate its effectiveness in sampling from even non-log-
concave posterior distributions. Experimental validation across multiple image reconstruction tasks confirms our

algorithm's superior performance compared to existing approaches.

B2-2 Schrodinger-Follmer Diffusion: Sampling, Optimization, Generative Learning
RN, EDUK
ME.: XA TAERT Schrodinger-Follmer 3 HUL FEWF FUREALIMEE, o4k, FOAE piAsE Y,

B2-3 JUTSEAR S ik A\ FO IR B P 48 Rt

WS, 792 iR

FE: A DIEMRAE TN E], IR0 TSR a0 AR DR BE I 28 et B E M, B SO A v kG B e e/
REGBER ., RESEERAMERN. %" Vision Transformer (ViT) . R0 2% > AR B
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B2-4 Flow-based Sampling Method

T &I, sPOR

$HE: Diffusion models have recently achieved remarkable success in generative learning. In this talk, we
adapt similar ideas to address classical distributional sampling problems. Specifically, we model the sampling
process as solving an initial value problem defined by a probability flow ODE. We propose several schemes for
computing the associated velocity field, and demonstrate that the method is applicable to any unnormalized
target distribution. In terms of Wasserstein distance, we provide theoretical guarantees on the sampling error and
show that the method avoids the curse of dimensionality. We evaluate the proposed sampling approach on
various mixture distributions. Experimental results show that it outperforms mainstream MCMC methods,

particularly in challenging multi-modal scenarios.

NeiRs B3 B P A TR (D

B3-1 Identification of an engram ensemble encoding memory flexibility in the dentate gyrus

BhER, iR

#E: How the memory engram is organized at the cell-assembly level to support not only encoding of learned
information but also memory flexibility remains elusive. Here, we propose a novel engram model encoded by
two orthogonal learning-recruited neuronal ensembles in the mouse dentate gyrus. One ensemble encodes
memory, while the other ensemble encodes forgetting. These two ensembles compete for retrieval-evoked
reactivation, where altering the reactivation of one ensemble shifts the other oppositely. Such encoding enables
flexibility in recall outcomes, ranging from full-scale memory expression to complete forgetting. Meanwhile,
learned information remains unperturbed, as reactivation modifications specifically target the forgetting
ensemble by regulating Rac1 activity, which is sensitive to cognitive and emotional events. Notably, memory
phenotypes observed in mouse models of Alzheimer's disease and autism are primarily linked to dysfunctions of
the forgetting ensemble, suggesting that the encoding of memory flexibility, rather than memory itself, is a

major target of cognitive disorders.

B3-2 i J5 R IRp Sk X U5 iR B AR B R RN A
FEILTT, iR
WE: Rk SR AR R @ H A A K B R A 2 2. 2R, X AE T
H AT TR RER U DB L R e, A AL PR B A Bl 70 AT I 2 T BURMEPERUS . QTR A2 3 AT 28R
EYVERERIFF AR I, A SCDUE AN TR R 2 A, WOVER ARV eI RS AR O TR
Mo FEAIRIR T, PR IR AR A2 SIC B R R R8s ST B 575, AR Sk
IR R R A 2 S HLIR R S IR E . eAh, FRIEHR Rk S 2RSS S A T i i
WIS, DASCELA: BRAR R 10 Se iy 05 8 BE VAl
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B3-4 #1235 JiR VAR5 R R BT 5T
HTFE, il
#HE: (TBD)

H4&Iis B4 E/: Al for Math

B4-1 High-Entropy Minority Tokens Drive Effective Reinforcement Learning for LLM Reasoning
ARIEZR, [ HLAE ]
#Z:. (TBD)

B4-2 TH [A] 20-& 30 1 2 B 5 342 BURIE B

SCUNAL, h E R ER R S RGRHE TR

HE: B EIEY (ATP) &4 EAOTIEE R, 9k, FEERESHEAKIE LR, ARG
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AT R BIUE B S AE HER 28 BAR T- B R RA 2%, HARH e B A 3h A o7 E R 5 1 3 Shik e
MiERZ.  FERIFERMRN: BRINIERY: UL, Bapd, g TR BiF. EEK

B4-3 Kimina-Prover: —Fh#EZR IR 7% Ak & BAE R R TE X

F#FH, Moonshot Al

FE: AIREN A Kimina-Prover, —NATE A8 BIE R FIRE S . 2B FA% O — Fhedfi
HIRAN IR RGN, BB AN RAE Lean 4 S5 B PR35 @ ok o) @7 61 .- Kimina-Prover i i
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B4-4 H¥EE K PARTE X1k

Z=3, Project Numina

E: Numina RIIFEIEECE RIPRB 50 TR THE, BOVIZGRER B &ERE. BRI =—
TEATE A numina EdE A 1 — L8 TAE DL R G 2E TAER R,

e isE BS /5. Al for Optimization

B5-1 A space-decoupling framework for optimization on bounded-rank matrices with orthogonally
invariant constraints

R, THE R B S RGRART TR

#E: Imposing additional constraints on low-rank optimization has garnered growing interest recently.
However, the geometry of coupled constraints restricts the well-developed low-rank structure and makes the
problem nonsmooth. In this paper, we propose a space-decoupling framework for optimization problems on
bounded-rank matrices with orthogonally invariant constraints. The "space-decoupling” is reflected in several
ways. Firstly, we show that the tangent cone of coupled constraints is the intersection of the tangent cones of
each constraint. Secondly, we decouple the intertwined bounded-rank and orthogonally invariant constraints into
two spaces, resulting in optimization on a smooth manifold. Thirdly, we claim that implementing Riemannian
algorithms is painless as long as the geometry of additional constraint is known a prior. In the end, we unveil the
equivalence between the original problem and the reformulated problem. The numerical experiments validate

the effectiveness and efficiency of the proposed framework.

B5-2 T E R A € KB B RAL BB IAA 2R

TE, RYITTREAR A 7 B

WE: o £ A, BUEA 8 R @A AR0E 2B 5 1 IR . Tk, KANE Y
(LLM) R JELE BB EBECA TT R . SRTAT, KA B AEAL AL 0] 3517 THT PRI A0 SR A 77 P PP A H5ai 2
A, BV ENE TSR RGN 5. i, BATEEH BenchdOpt, — /N T VPAl KA RLTE 26 PRI
(LP) HiRAEELMEME] (MILP) EALRE IRV R . Bk R EFE 818 M-S 7 B 1) 2
BRI R, B 16 Fhinl 2R A 5 40+ AT . RV vk b, IR 8 S Weisfeiler-Lehman
B [ ARSI BV E R LA Y [ SN MR AT R o SEERPPAS 27K, GPT-40 5 DeepSeek-V3 7E H Bt i
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B5-4 LMask: Learn to Solve Constrained Routing Problems with Lazy Masking

Z R, AbatRy

#E: Routing problems are canonical combinatorial optimization tasks with wide-ranging applications in
logistics, transportation, and supply chain management. However, solving these problems becomes significantly
more challenging when complex constraints are involved. In this talk, we introduce LMask, a novel learning
framework that utilizes dynamic masking to generate high-quality feasible solutions for constrained routing
problems. The LazyMask decoding method is proposed to lazily refine feasibility masks with the backtracking
mechanism. In addition, it employs the refinement intensity embedding to encode the search trace into the
model, mitigating representation ambiguities induced by backtracking. We provide theoretical guarantees for the
validity and probabilistic optimality of our approach. Extensive experiments on the TSPTW and TSPDL
demonstrate that LMask achieves state-of-the-art feasibility rates and solution quality, outperforming existing

neural methods.

el B6 B B HEHEB S

B6-1 Quantum for Science: Efficient Quantum Algorithms for Nonlinear Dynamics and Artificial
Intelligence Models
XIS, R
HE: Nonlinear dynamics play a prominent role in scientific computation and artificial intelligence. Whereas
previous quantum algorithms for general nonlinear equations have been severely limited due to the linearity of
quantum mechanics, we gave the first efficient quantum algorithm for nonlinear differential equations with
sufficiently strong dissipation. This is an exponential improvement over the best previous quantum algorithms,
whose complexity is exponential in the evolution time. Furthermore, we design the first quantum algorithm for
training classical sparse neural networks with end-to-end settings. We benchmark instances of ResNet with
sparse pruning applied to Cifar-100 dataset and DPM-Solver for U-ViT applied to ImageNet-100 dataset, and
we find that a quantum enhancement is possible at the early stage of learning. Our work shows that fault-tolerant
quantum computing can contribute to the training and inference processes of most state-of-the-art large language
models and diffusion models. References: [1]Efficient quantum algorithm for dissipative nonlinear
differential equations. Proceedings of the National Academy of Science 118, 35 (2021). [2]Towards provably
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efficient quantum algorithms for large-scale machine learning models. Nature Communications 15, 434 (2024)
[3]Towards efficient quantum algorithms for diffusion probability models. arXiv:2502.14252

B6-2 Achieving Chemical Accuracy with Quantum Computing Enforced Language Model

ZRF, PEB AR

#E: Finding accurate ground state energy of a many-body system has been a major challenge in quantum
chemistry. The integration of machine learning and quantum computing has shed new light on resolving this
problem. Here we demonstrate an integration of quantum computation with a transformer-based neural network
that for the first time reaches chemical accuracy on a strongly correlated molecular system at the 40-qubit scale.
Our hybrid algorithm, QiankunNet-QSCI, uses a quantum processor to efficiently sample crucial determinants
of the electronic wavefunction, which are then refined by a deep transformer network. We achieve an accurate
ground-state simulation of a challenging Fe.S> molecular cluster while using far fewer configuration basis states
than traditional approaches, which highlights the scalability of QiankunNet-QSCI and its potential applicability
to even larger systems.

B6-3 TH [ R R ALAIL A1 B AT 20 SR A4 P 2%

SRR, Bl S AR TR

WE: BEREE ISR RERE, B2 BRI TR AR B Rk R G HIBL LU NP HE ]
RRERSR A . BRI, FESERRISR R, IX ISR R AR Ay 3 o BRI 45 SR 2 — € A oA, Rt
AT A5 AR 2R 8 0 36 A A2 RSO — A B i EL A 0 e . JRATD R A Tl iy 20 R B A AL A0 A oAt
RIX [, it 7T IR EIAU IR FIEA e 2g Z, dEmtfd i e URE) XL
2R, T A R AE L R

B6-4 From Parameterized Quantum Comb to Quantum Unitary Time-Reversal

E&, FHRERE D

$E: Quantum combs play a vital role in characterizing and transforming quantum processes, with wide-
ranging applications in quantum information processing. However, obtaining the explicit quantum circuit for the
desired quantum comb remains a challenging problem. We propose PQComb, a novel framework that employs
parameterized quantum circuits (PQCs) or quantum neural networks to harness the full potential of quantum
combs for diverse quantum process transformation tasks. This method is well-suited for near-term quantum
devices and can be applied to various tasks in quantum machine learning. In particular, based on parameterized
quantum combs, we obtain simpler circuits for reversing unknown qubit-unitary operations and obtain the idea
of their generalization. We introduce a deterministic and exact approach to universally reverse arbitrary
unknown unitary transformations and more efficient quantum algorithms for inverting unitaries with specific
Hamiltonian structures.
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SeiE B7 E/: Al for Physics and Chemistry (1)
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&R E B8 H/H: Optimization for AI

B8-1 Memory-Efficient Block Coordinate Descent and Backpropagation for LLM Training Al

ZH, OO GRID

$E: This talk concerns optimization techniques for memory-efficient training of large language models,
mainly focusing on reducing the GPU memory cost raised by optimizer and Backpropagation (BP) process. We
first present BAdam, an optimization method that leverages the block coordinate descent (BCD) framework
with Adam's update rule. BAdam offers a memory-efficient approach to the full parameter finetuning of large
language models. It finetunes the Llama 3-8B and Llama 3-70B models using a single RTX3090-24GB GPU
and 4 A100-80GB GPUs, respectively. The experiment results confirm BAdam's efficiency in terms of memory
usage, running time, optimization capability, and downstream performance. Second, we introduce StreamBP,
which is a memory-efficient and exact BP algorithm for training LLMs on ultra long sequence (e.g., training
reasoning model) or for scaling up batch sizes. StreamBP builds upon linear decomposition of the chain rule,
and can be applied to SFT, PPO, GRPO, and DPO. It allows 3-5x larger sequence length / batch size compared

to standard BP with gradient checkpointing, while using the same or even less BP time.

B8-2 Fine-Tuning Large Language Models with Forward-only Optimizers Al

A3, ik

FHE: Large language model (LLM) fine-tuning faces significant challenges in GPU-memory efficiency. To
address this issue, we present advancing fine-tuning techniques for LLMs through forward-only optimization
methods that minimize reliance on heavy backward passes or gradient computations. Firstly, for full fine-tuning
tasks, we propose TeZO, a tensorized zeroth-order (ZO) optimizer that exploits low-rank structures across both
model parameters and temporal gradients. By modeling ZO perturbations as a 3D tensor and applying Canonical
Polyadic Decomposition (CPD), TeZO reduces memory consumption to 35% of prior ZO-Adam methods while
maintaining SOTA-level performance. Its compatibility with adaptive optimizers further enhances scalability for

37



hEPLEE I S RN TR &

large-scale deployment. Secondly, we introduce MaskPro, a novel framework for semi-structured (N:M)
sparsity in LLM mask fine-tuning. By learning a probabilistic categorical distribution over model weights and
integrating variance-reduced policy gradients with a loss residual tracker, MaskPro achieves stable training
while preserving hardware-friendly sparsity patterns. Both approaches can leverage gradient-free estimation to
mitigate the computational bottlenecks of LLM fine-tuning. Through comprehensive theoretical analysis and
experiments on diverse benchmarks, we demonstrate the power of forward optimizers in balancing efficiency,

accuracy, and memory usage.

B8-3 Accelerating RLHF Training with Reward Variance Increase

FRIEIR, A TR

#HE: Reinforcement learning from human feedback (RLHF) is an essential technique for ensuring that large
language models (LLMs) are aligned with human values and preferences during the post-training phase. As an
effective RLHF approach, group relative policy optimization (GRPO) has demonstrated success in many LLM-
based applications. However, efficient GRPO-based RLHF training remains a challenge. Recent studies reveal
that a higher reward variance of the initial policy model leads to faster RLHF training. Inspired by this finding,
we propose a practical reward adjustment model to accelerate RLHF training by provably increasing the reward
variance and preserving the relative preferences and reward expectation. Our reward adjustment method
inherently poses a nonconvex optimization problem, which is NP-hard to solve in general. To overcome the
computational challenges, we design a novel O(nlogn) algorithm to find a global solution of the nonconvex
reward adjustment model by explicitly characterizing the extreme points of the feasible set. As an important
application, we naturally integrate this reward adjustment model into the GRPO algorithm, leading to a more
efficient GRPO with reward variance increase (GRPOVI) algorithm for RLHF training. As an interesting
byproduct, we provide an indirect explanation for the empirical effectiveness of GRPO with rule-based reward
for RLHF training, as demonstrated in DeepSeek-R 1. Experiment results demonstrate that the GRPOVI
algorithm can significantly improve the RLHF training efficiency compared to the original GRPO algorithm.

B8-4 A Memory Efficient Randomized Subspace Optimization Method for Traning
=, bRy
$HE: The memory challenges associated with training Large Language Models (LLMs) have become a critical

concern, particularly when using the Adam optimizer. To address this issue, numerous memory-efficient
techniques have been proposed, with GaLore standing out as a notable example designed to reduce the memory
footprint of optimizer states. However, these approaches do not alleviate the memory burden imposed by
activations, rendering them unsuitable for scenarios involving long context sequences or large mini-batches.
Moreover, their convergence properties are still not well-understood in the literature. In this work, we introduce
a Randomized Subspace Optimization framework for pre-training and fine-tuning LLMs. Our approach
decomposes the high-dimensional training problem into a series of lower-dimensional subproblems. At each
iteration, a random subspace is selected, and the parameters within that subspace are optimized. This structured
reduction in dimensionality allows our method to simultaneously reduce memory usage for both activations and
optimizer states. We establish comprehensive convergence guarantees and derive rates for various scenarios,
accommodating different optimization strategies to solve the subproblems. Extensive experiments validate the
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superior memory and communication efficiency of our method, achieving performance comparable to GaLore
and Adam.

Se®E C1LEE: BUEIEREHEE (D

C1-1 Offline learning for combinatorial optimization

B I, I AT 5T B

% Traditionally machine learning and optimization are two different branches in computer science. They
need to accomplish two different types of tasks, and they are studied by two different sets of domain experts.
Machine learning is the task of extracting a model from the data, while optimization is to find the optimal
solutions from the learned model. In the current era of big data and Al, however, such separation may hurt the
end-to-end performance from data to optimization in unexpected ways. Data-driven optimization is an effective
way to tightly integrate data sampling, machine learning and optimization tasks. In this talk, I will focus on one
important approach in data-driven optimization, which is on how to learn from offline sampled data with the
goal of combinatorial optimization. I will briefly introduce my recent studies on optimization from structured
samples and offline learning for combinatorial multi-armed bandits to effectively tackle the problem.

C1-2 unilNF: Best-of-Both-Worlds Algorithm for Parameter-Free Heavy-Tailed MABs

TR, TR

$E: In this work, we present a novel algorithm, uniINF, for the Heavy-Tailed Multi-Armed Bandits
(HTMAB) problem, demonstrating robustness and adaptability in both stochastic and adversarial environments.
Unlike the stochastic MAB setting where loss distributions are stationary with time, our study extends to the
adversarial setup, where losses are generated from heavy-tailed distributions that depend on both arms and time.
Our novel algorithm "uniINF" enjoys the so-called Best-of-Both-Worlds (BoBW) property, performing
optimally in both stochastic and adversarial environments without knowing the exact environment type.
Moreover, our algorithm also possesses a Parameter-Free feature, i.e., it operates without the need of knowing
the heavy-tail parameters (c,a) a-priori. To be precise, uniINF ensures nearly-optimal regret in both stochastic
and adversarial environments, matching the corresponding lower bounds when (c,a) is known (up to logarithmic
factors). To our knowledge, uniINF is the first parameter-free algorithm to achieve the BoBW property for the
heavy-tailed MAB problem. Technically, we develop innovative techniques to achieve BoBW guarantees for
Parameter-Free HTMABS, including a refined analysis for the dynamics of log-barrier, an auto-balancing
learning rate scheduling scheme, an adaptive skipping-clipping loss tuning technique, and a stopping-time

analysis for logarithmic regret.

C1-3 KA E B T H5EES
B, a R
FE: 2024 5K R A7 T FE oAb 5 2 50K, 5tk 5 ) NI RRAT 555 2UAL 8% A\ 35 1) 45 2 4%
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BRI AR o AU T RE [ 0555 A0 2 S B R JE I 2 FHICRAE KA 52 B i FERIE R 57 T
SRS ST BRI R 52 o

C1-4 Settling the Sample Complexity of Online Reinforcement Learning

% 2., University of Pennsylvania

FHEL: A central issue lying at the heart of online reinforcement learning (RL) is data efficiency. While a
number of recent works achieved asymptotically minimal regret in online RL, the optimality of these results is
only guaranteed in a "'large-sample" regime, imposing enormous burn-in cost in order for their algorithms to
operate optimally. How to achieve minimax-optimal regret without incurring any burn-in cost has been an open
problem in RL theory. We settle this problem for the context of finite-horizon inhomogeneous Markov decision
processes. Specifically, we prove that a modified version of Monotonic Value Propagation (MVP) achieves the

minimal optimal regret for the entire range of sample size, essentially eliminating any burn-in requirement.

SeRE C2EHE: HBEIFAERERS (D

C2-1 Learning performance of Off-line Q-learning algorithms

PRGAB, V258l K

#E: With the help of massive data and rich computational resource, offline Q-learning has been widely used
in operations research and management science and receives great success in numerous applications including,
recommender system, games and robotic manipulation. Compared with avid research activities in practice, there
lack solid theoretical verifications and interpretability for the success of offline Q-learning, making it be a little
bit mystery. The aim of this talk is to discuss the generalization performance of two modern offline Q-learning
strategies: deep Q-learning and distributed Q-learning. In the framework of learning theory, we rigorously
prove that these two Q-learning approaches outperform the traditional one by showing its good generalization
error bound. In particular, our results show that the main reason of the success of deep Q-learning is due to the
excellent performance of deep neural networks (deep nets) in capturing special properties of rewards such as
the spatially sparse and piecewise constant rather than due to their large capacities. We also show that
distributed Q-learning succeeds in reducing the computational burden without sacrificing the generalization

performance

C2-2 Learning Theory of Classification with Deep Neural Networks

A%, HHRY

$E: Deep neural networks have achieved remarkable success in various binary classification tasks. Despite
their practical effectiveness, theoretical understanding of their generalization in binary classification remains

limited. In this talk, I will present our recent progress on classification using deep neural networks.

C2-3 FENURFERR R 57 JE 4 42 P 28 0 AT RS HE SR
HER, LA T
$E: We consider the problem of learning functions in the Fp,r and Barron spaces, which are relevant for
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understanding random feature models (RFMs), two-layer neural networks, as well as kernel methods. Through a
duality analysis, we reveal an equivalence between the approximation and estimations for learning functions in
the two spaces. This enables us to focus on the easier one among approximation and estimation when examining
the learnability of these function spaces. To demonstrate the flexibility and versatility of our duality framework,
we provide comprehensive analyses of two applications. 1) The first application is to study learning functions in
Fp,n with RFMs. We prove that RFM can learn functions in Fp,t without the curse of dimensionality as long as
p > 1. This result implies that RFMs can work well beyond the kernel regime as the Fp,n is strictly larger than
the associated reproducing kernel Hilbert space (RKHS) when p << 2. 2) The second application is to investigate
the learnability of reproducing kernel Hilbert space (RKHS) under the Loo norm. By leveraging the duality
principle, we relate the Loo learnability of a RKHS to the eigenvalue decay of the associated kernel, thereby
establishing both lower and upper bounds of sample complexity. We then apply these bounds to dot-product
kernels and identify conditions when the learning suffers or overcomes the curse of dimensionality. In
particular, these results imply that learning with (random) ReLU features is generally intractable under the Loo
norm. To establish the dual equivalence, we introduce an information-based complexity. We show that this
complexity can effectively control minimax estimation errors in various settings, which might be of independent

interest.

C2-4 Operator Learning and Neural Scaling Laws

UG, IR K

#E: Deep neural networks have demonstrated a great success in many applications. For operator learning and
large language model, neural scaling laws are observed in many works. Most of the observed laws are power
laws, i.e., the testing error can be written as a power of number of parameters or the number of training samples.
However, theoretical explanations of the scaling laws are largely missing. In this presentation, we focus on
operator learning and analyze the approximation and generalization error of some popular network architectures.
We provide a theoretical explanation of neural scaling laws, and show that if the data has low-dimensional

structures, one can achieve power laws.
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C5-1 Modeling Randomness Effects in High-Entropy Alloys

TRER, YK

#HE: High-entropy alloys (HEASs), i.e., single-phase, (nearly) equiatomic multicomponent, metallic materials,
have novel mechanical properties (high strength etc). We propose a stochastic Peierls-Nabarro model to
understand how random site occupancy affects intrinsic strength. The stochastic Peierls-Nabarro model accounts
for the randomness in the composition, characterized by both the standard deviation of the perturbation in the
interplanar potential and the correlation length within the spatial compositional distribution. The model predicts
the intrinsic strength of HEAs as a function of standard deviation and correlation length of the randomness. We
find that compositional randomness induces an intrinsic strength. This approach provides a fundamental
explanation to the origin of high strength of HEAs. We also derive stochastic continuum models for HEAs from
atomistic models that incorporate the atomic level randomness and the short-range order. These stochastic

continuum models theoretically validate the randomness incorporation in our stochastic Peierls-Nabarro model.

C5-2 A Stabilized Physics Informed Neural Networks Method for Wave Equations

B, IR

FE: In this work, we propose a novel Stabilized Physics Informed Neural Networks method (SPINN) for
solving wave equations. In general, this method not only demonstrates theoretical convergence but also exhibits
higher efficiency compared to the original PINNs. By replacing the EL"2E norm with EH"1& norm in the learning
of initial condition and boundary condition, we theoretically proved that the error of solution can be upper
bounded by the risk in SPINNs. Based on this, we decompose the error of SPINNs into approximation error,
statistical error and optimization error. Furthermore, by applying the approximating theory of EReLU"3&
networks and the learning theory on Rademacher complexity, covering number and pseudo-dimension of neural
networks, we present a systematical non-asymptotic convergence analysis on our method, which shows that the
error of SPINNs can be well controlled if the number of training samples, depth and width of the deep neural
networks have been appropriately chosen. Two illustrative numerical examples on 1-dimensional and 2-
dimensional wave equations demonstrate that SPINNs can achieve a faster and better convergence than classical
PINNs method.
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C5-3 Data-driven approaches for numerical PDEs: reduced order modeling & operator learning

FI B, EHERSCRE T7HD

FHEL: We report some recent progress in developing data-driven approaches for numerical PDEs. In the first
part, we will discuss a reduced order method (ROM) for solving the close-to-touch interaction between two
nanoparticles, where tailored ROM scheme is developed to overcome the near-singular nature of such problem,
significantly reducing the number of basis functions. In the second part, we will discuss an improved neural
network structure for operator learning tasks based on long-range & short-range convolutions; where a new
sum-of-exponentials ansatz is proposed in the long-range convolution module, significantly reducing the

training cost, meanwhile improving the generalization abilities of the neural network structure.

C5-4 Frequency-adaptive Multi-scale Deep Neural Networks

HicH, P ERE s S RGBT AR

$E: Multi-scale deep neural networks (MscaleDNNs) with downing-scaling mapping have demonstrated
superiority over traditional DNNs in approximating target functions characterized by high frequency features.
However, the performance of MscaleDNNs heavily depends on the parameters in the downing-scaling mapping,
which limits their broader application. In this work, we establish a fitting error bound to explain why
MscaleDNNs are advantageous for approximating high frequency functions. Building on this insight, we
construct a hybrid feature embedding to enhance the accuracy and robustness of the downing-scaling mapping.
To reduce the dependency of MscaleDNNs on parameters in the downing-scaling mapping, we propose
frequency-adaptive MscaleDNNs, which adaptively adjust these parameters based on a posterior error estimate
that captures the frequency information of the fitted functions. Numerical examples, including wave propagation
and the propagation of a localized solution of the schr€\ddot{\text{o} } Edinger equation with a smooth
potential near the semi-classical limit, are presented. These examples demonstrate that the frequency-adaptive

MscaleDNNs improve accuracy by two to three orders of magnitude compared to standard MscaleDNNs.

C5-5 A Generative Model for Composition Engineering in Multi-Principal Element Alloys

TR, & RO

$E: Multi-principal element alloys (MPEAs), characterized by the presence of multiple primary elements in
near-equiatomic or relatively high concentrations, exhibit distinctive mechanical properties arising from their
complex compositional landscapes. This inherent compositional complexity leads to significant challenges in
elucidating their deformation and fracture mechanisms for the efficient design. We introduce AlloyVAE, a
generative machine learning framework to directly predict MPEA residual stress from composition fields
(concentrations and short-range orders). This framework also enables the solution of inverse design problems

for strength enhancement by composition engineering.
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C6-2 Enhancing Full Waveform Inversion via Learned and Regularized Source Wavelet Manipulation
&z, G+

$E: Full-waveform inversion (FWI) is a powerful tool for high-resolution subsurface parameter
reconstruction. Due to the existence of local minimum traps, the success of the inversion process usually
requires a good initial model. Our study primarily focuses on understanding the impact of source wavelets on
the landscape of the corresponding optimization problem. We thus introduce a decomposition scheme that
divides the inverse problem into two parts. The first step transforms the measured data into data associated with
the desired source wavelet. Here, we consider inversions with known and unknown sources to mimic real
scenarios. The second sub-problem is the conventional full waveform inversion, which is much less dependent
on an accurate initial model since the previous step improves the misfit landscape. A regularized deconvolution
method and a convolutional neural network are employed to solve the source transformation problem.
Numerical experiments on the benchmark models demonstrate that our approach improves the gradient's quality

in the subsequent FWI and provides a better inversion performance.

C6-3 Parametric Neural Operator for Non-Line-of-Sight Imaging

BEM, Jbatiia Ky

#E: Non-line-of-sight (NLOS) imaging is an advanced computational imaging technology aimed at
reconstructing obscured or hidden scenes using indirect light signals. These signals are typically generated
through multiple reflections or scattering, resulting in weak signal strength and susceptibility to noise
interference. Therefore, incorporating physical processes into the reconstruction is crucial for enhancing the
quality. We propose a parametric neural operator model capable of learning complex mapping relationships.
Through training, this model can simulate the propagation of light and extract useful information from indirect
light signals. By leveraging the powerful fitting capabilities of neural networks, this approach can handle

complex light transmission models and effectively reduce noise.
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C7-1 FEALPy: A Cross-Platform Intelligent CAX Engine with Scalable Tensor Computation for Multi-
Method Simulations

BRAES, IR R

#E: FEALPy is a cross-platform, intelligent CAX engine designed to advance multi-method simulations
through scalable tensor computation. While originally rooted in finite element algorithms, FEALPy now
supports a wide array of numerical methods including finite difference, finite volume, particle methods, and
more. The platform's core lies in its unified mesh interface, enabling seamless transitions between different
mesh types and dimensions without the need to modify the underlying code. FEALPy integrates machine
learning algorithms, combining traditional CAX methods with Al to accelerate the development of next-
generation intelligent CAX applications. With its multi-backend tensor computation engine, supporting libraries
such as Numpy, PyTorch, and JAX, FEALPy is adaptable to modern heterogeneous hardware systems. Faithful
to its mission, FEALPy aims to provide reliable, robust support for researchers and engineers, promoting
innovation in CAX methods and paving the way for cutting-edge industrial applications. This presentation
presents FEALPy's architecture, key technologies, and diverse application scenarios, positioning it as a steadfast
companion in the field of intelligent CAX.

C7-2 Solving PDEs using deep neural networks with error control

BEF, TWARTTH LR

#E: Neural networks have shown significant potential in solving partial differential equations (PDEs). While
deep networks are capable of approximating complex functions, direct one-shot training often faces limitations
in both accuracy and computational efficiency. To address these challenges, we propose both Galerkin and
collocation adaptive methods that uses neural networks to construct basis functions guided by the equation
residual. The approximate solution is computed within the space spanned by these basis functions. As the
approximation space gradually expands, the solution is iteratively refined; meanwhile, the progressive
improvements serve as reliable a posteriori error indicators that guide the termination of the sequential updates.
Additionally, we introduce adaptive strategies for collocation point selection and parameter initialization to
enhance robustness and improve the expressiveness of the neural networks. We also derive the approximation
error estimate and validate the proposed method with several numerical experiments on various challenging

PDEs, demonstrating both high accuracy and robustness of the proposed methods.

C7-3 Multigrid Neural Operator and Preconditioner: Operator Learning and Fast Helmholtz Solver
XU, B S L R K A

#E: We present Multigrid Neural Operator (MgNO) and a Multigrid Neural Preconditioner, a unified
framework that integrates classical multigrid methodologies with modern deep learning to tackle complex PDEs
and accelerate linear solves for Helmholtz in particular. First, we introduce the Finite Neuron Method (FNM)—
a linearized E\mathrm {ReLU } "k& network with fixed, quasi-uniform weights—and prove that it attains optimal

Sobolev-space approximation rates without suftering the curse of dimensionality, thereby demonstrating the
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viability of linearized networks for high-dimensional operator learning. Next, to overcome spectral bias in
operator learning, we build multigrid neural operator (MgNO) on the MgNet architecture, parameterizing
multigrid V-cycle components (smoothers, intergrid transfers, coarse-grid corrections) as trainable operators.
Finally, we design an unsupervised, multigrid-style preconditioner for challenging systems like oscillatory
Helmbholtz equations, training both smoothing and coarsening maps using only PDE residuals and coefficient
fields. Coupling this learned smoother, the multigrid multi-channle neural preconditioner yields substantial

convergence speedups over classical alternatives.

C7-4 A deformation-based framework for learning solution mappings of PDEs defined on varying
domains

SMR, bt

$E: In this work, we establish a deformation-based framework for learning solution mappings of PDEs
defined on varying domains. The union of functions defined on varying domains can be identified as a metric
space according to the deformation, then the solution mapping is regarded as a continuous metric-to-metric
mapping, and subsequently can be represented by another continuous metric-to-Banach mapping using two
different strategies, referred to as the D2D framework and the D2E framework, respectively. We point out that
such a metric-to-Banach mapping can be learned by neural networks, hence the solution mapping is accordingly
learned. With this framework, a rigorous convergence analysis is built for the problem of learning solution
mappings of PDEs on varying domains. As the theoretical framework holds based on several pivotal
assumptions which need to be verified for a given specific problem, we study the star domains as a typical
example, and other situations could be similarly verified. We finally present several numerical experiments to
validate our theoretical results.
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D1-3 A Normalizing Flows-based Deep Reinforcement Learning Algorithm for Mean-Field Games
R, 1522l

#E: We propose an algorithm that combines deep reinforcement learning and fictitious play to solve infinite-
horizon, discounted and entropy-regularized mean-field games (MFGs) with population-dependent dynamics in
continuous state-action spaces. We design a dual normalizing flows architecture to represent both current and
average population distributions, enabling efficient sampling and accurate density estimation. We prove the
convergence of our algorithm for entropy-regularized MFGs in continuous state and action spaces, establishing
an EO(\Mrac{l} {t} )& decay rate of exploitability. Numerical experiments on three kinds of MFGs, especially
high-dimensional MFGs demonstrate that our algorithm can achieve faster exploitability convergence and better

performance than state-of-the-art baselines.
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D2-2 Neural Networks, Dynamical Systems, Control Families, and Formal Languages

BK R, ALK

$E: Deep learning has made significant progress in data science and natural science. Some studies have
linked deep neural networks to dynamical systems, but the network structure is restricted to residual networks. It
is known that residual networks can be regarded as numerical discretizations of dynamical systems. In this talk,
we consider traditional network structures and prove that vanilla feedforward networks can also be used for the
numerical discretization of dynamical systems, where the width of the network is equal to the input and output
dimensions. The proof is based on the properties of the leaky ReLU function and the numerical technique of the
splitting method for solving differential equations. The results could provide a new perspective for
understanding the approximation properties of feedforward neural networks. In particular, the minimum width
of neural networks and the minimal control family of dynamical systems for universal approximation can be

derived. In addition, the relationship between mapping compositions and regular languages can be established.

D2-3 Norm spaces rooted in neural networks and their applications

FEh, 2 H K%

fZE: We revisit several neural network-derived norm spaces, encompassing (extended) Barron spaces,
variation spaces, Radon-BV spaces, and spectral Barron spaces. We systematically investigate the properties of
these spaces and explore their applications within regularization schemes and inverse problems in partial
differential equations. It is joint work with Yuanyuan Li (Fudan), Peter Mathé (WIAS)

D2-4 Learning theory of spectral algorithms under covariate shift

¥RIEA], WL K

$E: In machine learning, it is commonly assumed that the training and test samples are drawn from the same
underlying distribution. However, this assumption may not always hold true in practice. In this talk, we delve
into a scenario where the distribution of the input variables (also known as covariates), differs between the
training and test phases. This situation is referred to as covariate shift. To address the challenges posed by
covariate shift, various techniques have been developed, such as importance weighting, domain adaptation, and
reweighting methods. In this talk, we specifically focus on the weighted spectral algorithm. Under mild
conditions imposed on the weights, we demonstrate that this algorithm achieves satisfactory convergence rates.
This talk is based on joint work with Prof. Jun Fan and Prof. Lei Shi.
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D2-5 The Condensation Phenomenon of Deep Learning

AT, LAY

#E: Condensation (also known as quantization, clustering, or alignment) is a widely observed phenomenon
where neurons in the same layer tend to align with one another during the nonlinear training of deep neural
networks (DNNSs). It is a key characteristic of the feature learning process of neural networks. In recent years, to
advance the mathematical understanding of condensation, we uncover structures regarding the dynamical
regime, loss landscape and generalization for deep neural networks, based on which a novel theoretical
framework emerges. This presentation will cover these findings in detail. First, I will present results regarding
the dynamical regime identification of condensation at the infinite width limit, where small initialization is
crucial. Then, I will discuss the mechanism of condensation at the initial training stage and the global loss
landscape structure underlying condensation in later training stages, highlighting the prevalence of condensed
critical points and global minimizers. Finally, I will present results on the quantification of condensation and its
generalization advantage, which includes a novel estimate of sample complexity in the best-possible scenario.
These results underscore the effectiveness of the phenomenological approach to understanding DNNs, paving a
way for further developing deep learning theory.

ootk D3I EE: HlBEI 54500

D3-1 Approximation error from discretizations and its applications

BRI, AL HUITE R

#HE: Converting a continuous variable into a discrete one is a commonly used technique for solving various
problems in both statistics and machine learn- ing. It is well known that discretizations result in biases.
However, this issue has not been studied systematically. In this paper, a general framework is proposed to
understand and compare the approximation errors of different s- licing strategies. Poincare-type inequalities are
first established for univariate discretizations and then generalized to the multivariate and other settings. It is
shown that the bias is controlled by two factors: the distance between t- wo specific distributions that are
generated with and without discretizations respectively, and the smoothness of the functions involved. Several
importan- t applications are considered to illustrate the usefulness of the results. Our results help to understand
the approximation error of some matrix used in the literature of dimension reduction. Furthermore, as an
illustration of the usefulness of discretizations, we propose an algorithm for regression prob- lems, by
combining random forest with partial discretizations of responses. Simulation results confirm the advantages of

this algorithm over the classical random forest.

D3-2 Connections between context data and model weights in transformers
BIRKR, F#E SR GRYID
FE: Context data—such as few-shot examples or chain-of thoughts—has become a key ingredient in how

large language models (LLMs) learn and adapt on the fly. This talk explores the connections between such
context data and the model weights in transformer-based LLMs. First, we connect context data to training data
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through a greedy layer-wise gradient descent algorithm. Then, we examine whether the effects of context can be
directly internalized into model weights. While standard transformer architectures fall short in this regard, we
find that small architectural modifications—Ilike adding query-dependent bias terms—can bridge this gap. These

insights shed light on how LLMs use context and suggest new ways to make them more adaptive and efficient.

D3-3 Uniform Inference for Kernel Gradient Flow Regression

HPE, HERY

FE: B4 RBIAESTHERER AN, 0 MRS ERHTHSEOT A, AR ZRAIHERE B BUA A B T
SEEREIPRAR . AT 5 AR R Y O RCR AR RS, R AT SOOI R B . AR AR A G I AR R
PEAE. HHER GMem, —FBLHULI A B 7. BRI AERRICIZ Sz Ak, HOCRE SUE AR T
—NIRSZIY MR, T BRI ARG 0 4% 1] S RS oM . S &5 SR AR 1% 07 V5 e S 3 HR T I
M. HG AT — NG — IS U HESE (UCGM). ZHESR B AEBE S AN R R TT 1%,
N2 B BN — B, SREEG — R RNER R AR . N FZAMESE, AT BLINZR R A /D P 3
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D3-4 Over-parameterization Leads to Adaptivity in High Dimensional Gaussian Sequence
T, TR

FHE: Recently, an adaptive feature program has advocated that over-parameterized models lead to more
adaptivity in regression. In this paper, we address the adaptivity of the diagonal over-parameterization in inner
product kernel regression on the high dimensional sphere £S”{d—1} &, where the sample size En \asymp
d"\gamma¢ for some {\gamma>0&. Motivated by the celebrated Le Cam equivalence, we first propose an
alternative simplified sequence model, which captures the essential behavior of inner product kernel regression
on the high dimensional sphere. We then show that the over-parameterized sequence model in high dimensional
settings achieves better convergence rates than fixed kernel regression, and actually matches the minimax rate
over the specified subset. Moreover, we also demonstrate that depth enhances generalization, i.e., introducing an
extra D-layer parameterization improves the generalization error rate, even approaching the parametric rate as D

Increases in some scenarios.

ST D4 EE: HLEREI SR

D4-1 Progress and open problems in structured optimization

TR, E R

FHE: Oracle-complexity analysis has become a powerful tool for understanding the fundamental limits of
optimization, yielding tight upper and lower bounds for a broad class of standard minimization problems,
whether convex or nonconvex. Building on this mature foundation, we turn to richer formulations such as min—
max and bilevel optimization, which better capture modern machine-learning objectives yet remain
comparatively under explored. For these settings we present several algorithmic refinements that improve
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known convergence rates, while simultaneously exposing significant gaps between the best available upper
bounds and existing—or currently unknown—Ilower bounds, thereby charting clear directions for future

research.

D4-2 Accelerated Gradient Descent by Concatenation of Stepsize Schedules

Tk, £ H K

FHEL: This talk considers stepsize schedules for gradient descent on smooth convex objectives. We extend the
existing literature and propose a unified technique for constructing stepsizes with analytic bounds for arbitrary
iterations. This technique constructs new stepsize schedules by concatenating two short stepsize schedules.
Using this approach, we introduce two new families of stepsize schedules, achieving a convergence rate of
EO(n"{-1.2716...} )& with a state-of-the-art constants for the objective value and gradient norm of the last
iterate, respectively. Furthermore, our analytically derived stepsize schedules either match or surpass the
existing best numerically computed stepsize schedules.

D4-3 BEAUEEBE T FESLIEAE R 4E [E] )3 [ B IE S 5 Ak P BE i

S, LRtk
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(statistical to computational gap) iH7C.

D4-4 FZOO: Fast Zeroth-Order Optimizer for Fine-Tuning Large Language Models towards Adam-
Scale Speed

gL, 722 A8 K 2

8 Fine-tuning large language models (LLMs) often faces GPU memory bottlenecks: the backward pass of
first-order optimizers like Adam increases memory usage to more than 10 times the inference level (e.g., 633
GB for OPT-30B). Zeroth-order (ZO) optimizers avoid this cost by estimating gradients only from forward
passes, yet existing methods like MeZO usually need tens of times more steps to converge. Can this trade-off
between speed and memory in ZO be fundamentally improved? Normalized-SGD, for instance, demonstrates
strong empirical performance with greater memory efficiency than Adam. In light of this, we introduce FZOO,
a Fast Zeroth-Order Optimizer towards Adam-Scale Speed. On the one hand, FZOO reduces the total forward
passes needed for convergence by employing batched one-sided estimates that adapt step-sizes based on the
standard deviation of batch losses. On the other hand, it accelerates per-batch computation through the use of
Rademacher random vector (1) perturbations coupled with CUDA’s paral lel processing capabilities. Extensive
experiments on diverse models (including RoBERTa-large, the OPT family (350M-66B), Phi-2, and Llama3)

across 11 varied downstream tasks validate FZOO’s effectiveness. On average, FZOO outperforms
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MeZOby+3%inaccuracy while requiring 3x fewer forward passes. Notably, for the RoBERTa-large model,
FZOO achieves average improvements of +5.6% in accuracy and 18% reduction in forward passes compared to
MeZO0, achieving con vergence speeds comparable to Adam. We also provide theoretical analysis proving
FZ0O’s formal equivalence to a normalized-SGD update rule and establishing its convergence guarantees.
Beyond full-parameter tuning, FZOO plugs smoothly into PEFT techniques, unlocking even larger memory
savings. Taken together, our results make single-GPU, high-speed, full-parameter fine-tuning realistic today

and point toward future work on memory-efficient pre-training.

ek DS Bl REEIERERH

D5-1 OmniFluids: Unified Physics Pre-trained Modeling of Fluid Dynamics
Tk, o E A RK

#E: Computational fluid dynamics (CFD) underpins progress in numerous scientific and engineering fields,
yet high-fidelity simulations remain computationally prohibitive. While machine learning approaches promise
acceleration, they typically specialize in single physical systems or demand extensive training data, hindering
their practical deployment. We introduce OmniFluids, a unified, physics-only pre-trained model that captures
fundamental fluid dynamics laws and adapts efficiently to diverse tasks with minimal data. To achieve this, we
develop a training framework combining physics-only pre-training, coarse-grid operator distillation, and few-
shot fine-tuning. This enables OmniFluids to retain broad physics knowledge while delivering fast and accurate
predictions. Architecturally, OmniFluids integrates a mixture of operators, a multi-frame decoder, and factorized
Fourier layers, which enable efficient and scalable modeling of diverse physical tasks while maintaining
seamless integration with physics-based supervision. Across a broad range of two- and three-dimensional
benchmarks, OmniFluids outperforms state-of-the-art Al-driven methods in flow field prediction and turbulence
statistics, delivering 10-100x speedups compared to classical solvers, and accurately recovers unknown physical
parameters from sparse, noisy data. This work demonstrates the potential of training a unified CFD solver solely
from physics knowledge, establishing a new paradigm for efficient and generalizable surrogate modeling across
complex fluid systems.

D5-2 H ARSI E I R S5
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D6-2 Restoring Network Evolution with Transferable Graph-Based Machine Learning

BASELR, R 77 BHEOK 2

HEL: The structural evolution of complex networks, such as biological and social systems, poses significant
challenges for analysis due to their intricate dynamics and diverse domains. Here, we introduce a transferable
machine-learning framework that integrates graph neural networks and graph transformers to reconstruct the
evolutionary trajectories of networked systems. Validated across multiple network domains, our approach
achieves up to 20% higher prediction accuracy, reducing model complexity by over 60% and computation time
by more than two orders of magnitude compared to state-of-the-art methods. By leveraging transfer learning, it
reliably infers any network’s evolution without prior temporal data. Applying this framework, we infer the
formation times of over 2.6 million neural connections in the Drosophila brain for the first time, revealing a
strong correlation between connection formation time and functional essentiality. Our work paves the way for
decoding the evolution of complex networks and harnessing cross-domain transfer learning, unlocking new

frontiers in network science and beyond.

D6-3 MARALIESE T KPS BHLE 2
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ARG E SRR O R AR R e R I RS E, KR T RV R YR 2% R AR 5%,
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D6-5 Latent Iterative Refinement Flow: A Geometric-Constrained Approach for Few-Shot Generation
R, P RO

$HE: Few-shot generation, which synthesizes diverse, high-quality samples from limited training examples, is
still a core chal- lenge in generative modeling. Current methods face two critical issues: models trained from
scratch often overfit and memorize sparse data, while fine-tuning large pre-trained models can inherit domain
biases but struggle to capture the latent space’ s geometric structure. To address these limitations, we introduce
Latent Iterative Refinement Flow (LIRF), a novel framework for few-shot generation as the progressive
densification of latent manifold. We provide theoretical guarantees and convergence theorem in Hausdorff
distance between generated and true data manifolds. Our method achieves substantial
performanceimprovements, evidenced by a FID of 30.29 on CIFAR-10, significantly outperforming baselines
such as Lottery Ticket Hypothesis (41.47) and AdvAug (41.25). We also demonstrate the framework’™ s
scalability by generating coherent, high-resolution images on AFHQ-Cat. Comprehensive ablation studies
confirm the critical necessity of both our manifold-preserving latent space and the contractive correction
mechanism. In summary, LIRF offers a theoretically grounded and practically effective, domain-agnostic

solution for data-scarce generative modeling.

iRt DT B8 KRR AEE
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D8-3 Towards Al for Genomics: GENERator & GENERanno
RS, T =
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HEL: The rapid advancement of DNA sequencing technologies has significantly expanded our capacity to
decode genomic information. However, the accurate interpretation and functional understanding of complex
biological sequences remain major challenges in genomics. To address these challenges, we introduce two
innovative tools—GENERator and GENERanno—that leverage large language model techniques for genomic
sequence modeling and analysis. GENERator is a generative genomic foundation model built upon a
Transformer decoder architecture. It achieves state-of-the-art performance across multiple benchmarks while
maintaining remarkable efficiency: it matches the performance of Evo2 with only 1% of its training cost,
making it one of the most resource-efficient DNA language models to date. GENERator excels at generating
biologically plausible protein-coding sequences consistent with the central dogma of molecular biology, as well
as optimizing regulatory elements such as enhancers with programmable activity profiles. These capabilities
position it as a powerful tool for synthetic biology, functional genomics, and therapeutic design. In contrast,
GENERanno is a compact yet powerful encoder-based model specifically optimized for metagenomic
annotation. It consistently outperforms traditional HMM-based methods (e.g., GLIMMER3, GeneMarkS2,
Prodigal) and recent LLM-based approaches (e.g., GeneLM), demonstrating robust generalization on archaeal
genomes and novel species. Leveraging advanced contextual understanding, GENERanno pioneers key
annotation capabilities—including pseudogene identification, taxonomic classification, gene fitness prediction,
and antibiotic resistance profiling—directly from raw DNA sequences, eliminating reliance on reference
databases or comparative genomics workflows. Together, GENERator and GENERanno form a synergistic
framework that bridges the gap between generative modeling and precise functional annotation in genomics.
This dual-model paradigm not only enhances our ability to interpret and engineer biological systems but also

lays the foundation for next-generation Al applications in functional genomics, metagenomics, and beyond.
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E1-1 (De)-regularized Maximum Mean Discrepancy Gradient Flow

RRR, B

#E: We introduce a (de)-regularization of the Maximum Mean Discrepancy (DrMMD) and its Wasserstein
gradient flow. Existing gradient flows that transport samples from source distribution to target distribution with
only target samples, either lack tractable numerical implementation (f-divergence flows) or require strong
assumptions, and modifications such as noise injection, to ensure convergence (Maximum Mean Discrepancy
flows). In contrast, DrMMD flow can simultaneously (i) guarantee near-global convergence for a broad class of
targets in both continuous and discrete time, and (ii) be implemented in closed form using only samples. The
former is achieved by leveraging the connection between the DrMMD and the &\chi"2&-divergence, while the
latter comes by treating DrMMD as MMD with a de-regularized kernel. Our numerical scheme uses an adaptive
de-regularization schedule throughout the flow to optimally trade off between discretization errors and
deviations from the &\chi"2& regime. The potential application of the DrMMD flow is demonstrated across

several numerical experiments, including a large-scale setting of training student/teacher networks.

E1-2 Context-Size Scaling for Operator and In-Context Learning

XIFE, EHERF

$E: Meta-learning, seeking to develop models capable of rapidly adapting to new tasks from limited data,
has emerged as a prominent paradigm in modern machine learning. Notable examples include in-context
learning and operator learning. Such tasks often exhibit a mismatch between training and test-time context sizes,
for instance, in prompt length variation for in-context learning and resolution shifts for operator learning. In this
talk, we investigate the transferability of model performance across varying context size and analyze how

performance scales with both training and test-time context size.

E1-3 SGD Achieves Optimality for Least Squares via Power-Decay Learning Rates
ErEBE, bR

$HE: In this work, we study the problem of solving the least-squares regression task via one-pass stochastic
gradient descent (SGD) in infinite-dimensional Hilbert spaces. Under standard source and capacity conditions,
we investigate the role of learning rate schedules (LRS) in accelerating convergence. We propose a novel LRS,
termed power decay, and provide a sharp theoretical analysis showing that SGD equipped with this schedule
achieves the minimax optimal convergence rate. Remarkably, our method eliminates the logarithmic factors
present in prior analyses, yielding the first provable instance where SGD attains optimality with a carefully
designed LRS. Leveraging a continuous-time approximation framework, we further derive intuitive insights into
the dynamics of SGD and establish a sufficient condition under which general LRSs attain optimal rates. Our
results offer both theoretical advancements and practical guidelines for designing effective learning rate

schedules in stochastic optimization.

E1-4 Architecture induces invariant manifolds of neural network training dynamics
R, HigACE R
$E: The architecture of deep neural networks is widely recognized as the primary factor behind their

exceptional performance. However, how architectural design influences training dynamics has remained unclear
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for decades, largely due to the difficulty of isolating architectural effects from other variables. To address this
challenge, we introduce a novel analytical framework based on geometric control theory for studying neural
network dynamics. This framework involves: (i) relaxing the gradient flow dynamics into a geometric control
problem to isolate the influence of architecture on training dynamics; and (ii) analyzing the resulting control
orbits to identify architecture-induced invariant manifolds within the gradient flow. Our analysis reveals that
symmetry—particularly permutation symmetry—is a key mechanism that gives rise to a hierarchy of invariant
manifolds, ranging from low to high dimensions. The invariant manifolds demonstrate neuron condensation and
equivalence to reduced-width networks, with dynamics that yield low-complexity fittings of the training data.
Overall, our framework establishes a strong connection between deep learning and dynamical systems theory,

opening new avenues for theoretical advances through the rich concepts and tools of dynamical systems.

PSS E2EH: ALER (D

E2-1 DICE: Data Influence Cascade in Decentralized Learning

REAR, #TRF

$HE: Decentralized learning offers a promising approach to crowdsource data consumptions and
computational workloads across geographically distributed compute interconnected through peer-to-peer
networks, accommodating the exponentially increasing demands. However, proper incentives are still in
absence, considerably discouraging participation. Our vision is that a fair incentive mechanism relies on fair
attribution of contributions to participating nodes, which faces non-trivial challenges arising from the localized
connections making influence *"cascade" in a decentralized network. To overcome this, we design the first
method to estimate Data Influence CascadE (DICE) in a decentralized environment. Theoretically, the
framework derives tractable approximations of influence cascade over arbitrary neighbor hops, suggesting the
influence cascade is determined by an interplay of data, communication topology, and the curvature of loss
landscape.DICE also lays the foundations for applications including selecting suitable collaborators and

identifying malicious behaviors.

E2-2 The Underlying Mechanism behind Deep Learning: From Empirical Discoveries to Theoretical
Attempts

JFREms, bigssEKE

#E: Despite the successes of modern deep neural networks, theoretical understanding of them still lags
behind. Just like in many other scientific disciplines, a crucial step toward formulating a comprehensive theory
of deep learning lies in empirical investigations of the learning pipeline, intending to uncover nontrivial
phenomena that shed light on the underlying mechanisms. In the first part, I will present a study on the
Sharpness-Aware Minimization (SAM). We find that SAM selects flatter minima over Stochastic Gradient
Desecent (SGD) even when applied only during the last few epochs of training. We theoretically build a two-
phase picture of the training dynamics of SAM in the late phase. This study advances our understanding of the
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surprising generalization ability of neural networks. In the second part, I will introduce an intriguing
phenomenon, Layerwise Linear Feature Connectivity (LLFC), which greatly strengthens the Linear Mode
Connectivity (LMC) phenomenon that has been widely studied in the community. By adopting a feature-centric
perspective, the study of LLFC transcends and advances our understanding of LMC.

E2-3 Why Rectified Flow is Better? Elucidating VP, VE and RF-based diffusion models

W, IEASE K

fE: Recently, rectified flow (RF)-based models have achieved a great performance in 2D, 3D, and video
generation compared with previous variance preserving (VP)-based models (SD XL) and variance exploding
(VE)-based models (EDM, Consistency Models). However, the theoretical explanation for the great
performance of RF-based modes is lacking. This work starts from the sample complexity perspective and
explicitly explains why RF-based models enjoy a better complexity than VP and VE-based models.

E2-4 Diffusion for Discriminative Modeling and Certification
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A E3E/E. Al B

E3-1 Affine Equivariant Networks Based on Differential Invariants

ZZRE, bR

FHE: In the field of geometric deep learning, equivariant networks enhance model efficiency and
generalization by embedding symmetry prior knowledge into model design. However, most existing methods
require discretization or sampling of groups, leading to increased model sizes for larger groups, with the affine
group being a representative challenge. In this work, we build affine equivariant networks based on differential
invariants from the viewpoint of symmetric PDEs, without discretizing or sampling the group. In the model
construction, we innovatively normalize polynomial relative differential invariants under a special norm to
create a new affine invariant, which effectively improves numerical stability when replacing classical

differential invariants. For further flexibility, we design an equivariant layer, which can be directly integrated
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into various standard network architectures. Moreover, the proposed framework for constructing equivariant
networks is highly general and widely applicable, suitable for designing corresponding equivariant networks for
the affine group and its continuous subgroups.

E3-2 LLaDA-V: X3 805 SEA AT 518 04

WeBEM, HEARKY

WE: AMENHT LLaDA-V, ‘BN eaik T E iy i m 2 s s S, Z1TIES
FERBEEBRER A IR AH B 408, B XD 7 5 AT I A ok A e BB . SRR g
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E3-3 The Sharpness Disparity Principle in Transformers for Accelerating Language Model Pre-Training
B P N

$E: Transformers consist of diverse building blocks, such as embedding layers, normalization layers, self-
attention mechanisms, and point-wise feedforward networks. Thus, understanding the differences and
interactions among these blocks is important. In this paper, we uncover a clear sharpness disparity across these
blocks, which emerges early in training and intriguingly persists throughout the training process. Motivated
by this finding, we propose Blockwise Learning Rate (LR), a strategy that tailors the LR to each block’s
sharpness, accelerating large language model (LLM) pre-training. By integrating Blockwise LR into AdamW,
we consistently achieve lower terminal loss and nearly 2x speedup compared to vanilla AdamW. We
demonstrate this acceleration across GPT-2 and LLaMA, with model sizes ranging from 0.12B to 2B and
datasets of OpenWebText, MiniPile, and C4. Finally, we incorporate Blockwise LR into other optimizers such
as Adam-mini (Zhang et al., 2024c), a recently proposed memory-efficient variant of Adam, achieving a
combined 2x speedup and 2x memory saving. These results underscore the potential of exploiting the sharpness
disparity to improve LLM training.

B4 B4 HRR: Ak

E4-1 Bilevel Reinforcement Learning via the Development of Hyper-gradient without Lower-Level
Convexity

B, T EREER S RGER R

#E: Bilevel reinforcement learning (RL), which features intertwined two-level problems, has attracted
growing interest recently. The inherent non-convexity of the lower-level RL problem is, however, to be an
impediment to developing bilevel optimization methods. In this talk, by employing the fixed point equation
associated with the regularized RL, we characterize the hyper-gradient via fully first-order information, thus
circumventing the assumption of lower-level convexity. This, remarkably, distinguishes our development of
hyper-gradient from the general AID-based bilevel frameworks since we take advantage of the specific structure
of RL problems. Moreover, we design both model-based and model-free bilevel reinforcement learning
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algorithms, facilitated by access to the fully first-order hyper-gradient. Both algorithms enjoy the optimal
convergence rate. To extend the applicability, a stochastic version of the model-free algorithm is proposed,

along with results on its iteration and sample complexity.

E4-2 SPARKLE: A Unified Single-Loop Primal-Dual Framework for Decentralized Bilevel Optimization
U, bR

HEL: In this talk, we focus on decentralized bilevel optimization, in which multiple agents collaborate to solve
problems involving nested optimization structures with neighborhood communications. Most existing literature
primarily utilizes gradient tracking to mitigate the influence of data heterogeneity, without exploring other well-
known heterogeneity-correction techniques such as EXTRA or Exact Diffusion. Additionally, these studies
often employ identical decentralized strategies for both upper- and lowerlevel problems, neglecting to leverage
distinct mechanisms across different levels. To address these limitations, we propose SPARKLE, a unified
Single-loop Primal-dual AlgoRithm frameworK for decentralized bilEvel optimization. SPARKLE offers the
flexibility to incorporate various heterogeneitycorrection strategies into the algorithm. Moreover, SPARKLE
allows for different strategies to solve upperand lower-level problems. We present a unified convergence
analysis for SPARKLE, applicable to all its variants, with state-of-the-art convergence rates compared to
existing decentralized bilevel algorithms. Our results further reveal that EXTRA and Exact Diffusion are more
suitable for decentralized bilevel optimization, and using mixed strategies in bilevel algorithms brings more

benefits than relying solely on gradient tracking.

E4-3 Stochastic optimization over expectation-formulated generalized Stiefel manifold

ZMER, P EREB R S RER T AR

FHEL: In this talk, we consider a class of stochastic optimization problems over the expectation-formulated
generalized Stiefel manifold \eqref{sogse}, where the objective function $f$ is continuously differentiable. We
propose a novel constraint dissolving penalty function with a customized penalty term \eqref{cdfcp}, which
maintains the same order of differentiability as $f$. Our theoretical analysis establishes the global equivalence
between \ref{cdfcp} and \ref{sogse}, in the sense that they share the same first-order and second-order
stationary points under mild conditions. These results on equivalence enable the direct implementation of
various stochastic optimization approaches to solve \ref{sogse}. In particular, we develop a stochastic gradient
algorithm and its accelerated variant by incorporating an adaptive step size strategy. Furthermore, we prove their
$\mathcal {O} (\varepsilon”{-4})$ sample complexity for finding an $\varepsilon$-stationary point of
\ref{cdfcp}. Comprehensive numerical experiments show the efficiency and robustness of our proposed
algorithms.

E4-4 Subspace Optimization for Large Language Models with Convergence Guarantees

TR, AbatRe

#ZE: Subspace optimization algorithms, such as GaLore (Zhao et al., 2024), have gained attention for pre-
training and fine-tuning large language models (LLMs) due to their memory efficiency. However, their
convergence guarantees remain unclear, particularly in stochastic settings. In this paper, we reveal that GaLore

does not always converge to the optimal solution and provide an explicit counterexample to support this finding.
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We further explore the conditions under which GaLore achieves convergence, showing that it does so when
either (i) a sufficiently large mini-batch size is used or (ii) the gradient noise is isotropic. More significantly, we
introduce GoLore (Gradient random Low-rank projection), a novel variant of GaLore that provably converges in
typical stochastic settings, even with standard batch sizes. Our convergence analysis extends naturally to other
subspace optimization algorithms. Finally, we empirically validate our theoretical results and thoroughly test the
proposed mechanisms. Codes are available at https://github.com/pkumelon/GoLore.

22 ESEHB: Al and PDE (1)

ES-1 In vivo 3D ultrasound computed tomography of musculoskeletal tissues with generative neural PDE
solvers

BAbR, THHERY

#ZE: Ultrasound computed tomography (USCT) holds great promise as a radiation-free, high-resolution
modality for clinical imaging. However, its translation to bone-containing tissues —such as musculoskeletal
systems—remains hampered by conventional ray-based beamforming reconstruction that neglects strong wave
scattering physics. Here, we present an innovative Real2Sim2Real framework that fuses generative neural
networks with physics-informed partial differential equation (PDE) solvers to achieve fast, high-fidelity 3D
USCT. By learning a compact surrogate of the complete physics for ultrasonic wave propagation from only
dozens of cross-modality images, our approach combines the accuracy of wave PDE modeling with the
computational efficiency and stability of deep neural networks. This enables, for the first time, accurate and
efficient quantitative wave-based imaging of in vivo human musculoskeletal tissues, providing spatial maps of
acoustic properties rather than conventional reflection-mode images. On both synthetic benchmarks and in vivo
human data (breast, arm, and leg), we reconstruct 3D maps of quantitative tissue parameters in under ten
minutes, achieving unprecedented sensitivity to biomechanical properties (e.g., sound speed) in muscle and bone
regions and delivering imaging resolution comparable to magnetic resonance imaging. By overcoming the
computational bottleneck in strongly scattering regimes, our method paves the way for routine clinical USCT
assessment of musculoskeletal diseases such as sarcopenia. This transformative deep learning framework also

extends to other biomedical imaging challenges.

ES5-2 Redefining Neural Operators in &d + 1 Dimensions

REEFE, HBRHECRY 7HD

. Neural Operators have emerged as powerful tools for learning mappings between function spaces.
Among them, the kernel integral operator has been widely validated on universally approximating various
operators. Although recent advancements following this definition have developed effective modules to better
approximate the kernel function defined on the original domain (with {d§ dimensions, £d=1, 2, 3...§), the
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unclarified evolving mechanism in the embedding spaces blocks our view to design neural operators that can
fully capture the target system evolution. Drawing on recent breakthroughs in quantum simulation of partial
differential equations (PDEs), we elucidate the linear evolution process in neural operators. Based on that, we
redefine neural operators on a new £d+1& dimensional domain. Within this framework, we implement our
proposed Schrodingerised Kernel Neural Operator (SKNO) aligning better with the £d+1& dimensional
evolution. In experiments, our Ed+1& dimensional evolving linear block performs far better than others. Also, we
test SKNO's SOTA performance on various benchmark tests and also the zero-shot super-resolution task. In
addition, we analyse the impact of different lifting and recovering operators on the prediction within the
redefined NO framework, reflecting the alignment between our model and the underlying £d+1& dimensional

evolution.

ES-3 Harnessing Scale and Physics: A Multi-Graph Neural Operator Framework for PDEs on Arbitrary
Geometries

ZEZ, FBRHERY 07D

#8E: Partial Differential Equations (PDEs) underpin many scientific phenomena, yet traditional computational
approaches often struggle with complex, nonlinear systems and irregular geometries. This paper introduces the
\textbf{fAMG} method, a \textbf{M} ulti-\textbf{G} raph neural operator approach designed for efficiently
solving PDEs on \textbf{A } rbitrary geometries. AMG leverages advanced graph-based techniques and
dynamic attention mechanisms within a novel GraphFormer architecture, enabling precise management of
diverse spatial domains and complex data interdependencies. By constructing multi-scale graphs to handle
variable feature frequencies and a physics graph to encapsulate inherent physical properties, AMG significantly
outperforms previous methods, which are typically limited to uniform grids. We present a comprehensive
evaluation of AMG across six benchmarks, demonstrating its consistent superiority over existing state-of-the-art
models. Our findings highlight the transformative potential of tailored graph neural operators in surmounting the
challenges faced by conventional PDE solvers. Our code and datasets are available on

\url {https://github.com/lizhihao2022/AMG } .

ES5-4 Point Cloud Neural Operator for Parametric PDEs on Complex and Variable Geometries
BRT, etk

#E: Surrogate models are critical for accelerating computationally expensive simulations in science and
engineering, particularly for solving parametric partial differential equations (PDEs). Developing practical
surrogate models poses significant challenges, particularly in handling geometrically complex and variable
domains, which are often discretized as point clouds. In this work, we systematically investigate the formulation
of neural operators—maps between infinite-dimensional function spaces—on point clouds to better handle
complex and variable geometries while mitigating discretization effects. We introduce the Point Cloud Neural
Operator (PCNO), designed to efficiently approximate solution maps of parametric PDEs on such domains. We
evaluate the performance of PCNO on a range of pedagogical PDE problems, focusing on aspects such as
boundary layers, adaptively meshed point clouds, and variable domains with topological variations. Its
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practicality is further demonstrated through three-dimensional applications, such as predicting pressure loads on
various vehicle types and simulating the inflation process of intricate parachute structures.

242 E6 L. Al and PDE (I1)

E6-1 Weak Generative Sampler to Sample Invariant Distribution of Stochastic Differential Equation

b I L NG &

HEL: The solution of many typical high-dimensional PDEs (such as the Fokker-Planck, and McKean-Vlasov
equations) is associated with a probability distribution. To solve such PDEs by deep learning techniques is
usually to simply find a neural network for the density function itself, subject to certain positivity and
normalization conditions. The further utilization of the solution requires random sampling again. We introduce a
framework of Weak Generative Sampler (WGS) to both solve the PDE and generate samples more efficiently
than the PINN and the Ritz method. Our proposed loss function is based on the weak form and the generic
probability interpretation of the loss function. The details of this talk will explain why the efficiency and
adaptivity are so easy to achieve in this WGS for high-dimensional PDEs.

E6-2 Data-driven optimized high-order WENO schemes with low-dissipation and low-dispersion
A&, BrRHRy
$E: Classical high-order weighted essentially non-oscillatory (WENO) schemes are designed to achieve

optimal convergence order for smooth solutions and to maintain non-oscillatory behaviors for discontinuities.
However, their spectral properties are not optimal, which limits the ability to capture high-frequency waves and
small-scale features. In this paper, we propose a data-driven optimized method to improve the spectral
properties of the WENO schemes. By analyzing the approximate dispersion relation (ADR), the spectral error of
the schemes can be bounded by the reconstructed errors of a series of trigonometric functions with different
wavenumbers. Therefore, we propose the new schemes WENOS5-JS/Z-NN that introduce a compensation term
parameterized by a neural network to the weight function of the WENOS5-JS/Z schemes. The neural network is
trained such that the generated weights can minimize the reconstructed errors over a large number of stencils,
and furthermore, improve the spectrum accuracy. Meanwhile, the Total Variation Diminishing (TVD) constraint
and anti-dissipation penalization are incorporated into the loss function to enhance the shock-capturing
capability and preserve stability in simulating high-frequency waves. Compared to WENOS5-JS/Z, our schemes
maintain the ability to capture discontinuities while providing higher resolution for problems with fine-scale
flow features. The ADR indicates that the new schemes can match the exact spectrum more accurately over a

broader range of wavenumbers.

E6-3 A physics-informed deep learning method for solving hydrate dissociation problems in sediment
BRL, A B RS (dERD

$ZE: Natural gas hydrates are considered a promising energy resource due to their vast reserves, yet the

dissociation process during thermal stimulation remains complex and difficult to model accurately. This study

presents a nested neural network framework for solving the hydrate dissociation problem in sediment. The
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proposed approach integrates governing conservation laws and thermodynamic assumptions into a deep learning
model comprising two nested neural networks—an outer network for predicting the temperature field and an
inner network for estimating the location of the moving phase-change boundary. The model controls the
residuals, initial and boundary conditions, and interface constraints at moving boundaries of partial differential
equations through a customized adaptive loss function. Compared with fractional-order models, this framework
demonstrates better performance in handling thermal effects and strong thermal coupling.

E6-4 High Order Integrated Reconstruction for Finite Volume Scheme

TRRME, dbatRy

$Z: In[L. Chen and R. Li, An Integrated Quadratic Reconstruction for Finite Volume Schemes to Scalar
Conservation Laws in Multiple Dimensions, (2017)], an integrated quadratic reconstruction was proposed for
finite volume methods on flexible unstructured grids, which satisfy a local maximum principle and has 3-th
order for smooth solutions. However, the optimization process consumes an excessive amount of time overhead.
To address the need for efficient solving of large-scale small-scale optimization problems, this study employs
neural networks to learn the solution mapping of optimization problems, significantly improving computational

efficiency.

E6-5 SPIKE: stable physics-informed kernel evolution method for solving hyperbolic conservation laws

i X P N

$E: We present a Stable Physics-Informed Kernel Evolution (SPIKE) method for solving inviscid one-
dimensional hyperbolic conservation laws under periodic boundary conditions—a purely physics-driven
approach requiring no training data. By evolving adaptive kernels through direct minimization of the governing
equation loss, SPIKE intrinsically preserves the conservation invariants of the system while dynamically
aligning kernel propagation with local characteristic speeds. Numerical validation on prototypical equations
demonstrates oscillation-free shock formation/propagation, with theoretical analysis proving strict adherence to
Rankine-Hugoniot conditions. This framework outperforms physics-informed ML methods (e.g., PINN, EDNN)
in robustness and efficiency, establishing a new paradigm for structure-preserving computation of conservation

laws.

22 BT E . Al for Science (1)

E7-1 AeroGTO: An Efficient Graph-Transformer Operator for Learning Large-Scale Aerodynamics of
3D Vehicle Geometries

XUWEFE, LK

$ZE: Obtaining high-precision aerodynamics in the automotive industry relies on large-scale simulations with
computational fluid dynamics, which are generally time-consuming and computationally expensive. Recent
advances in operator learning for partial differential equations offer promising improvements in terms of
efficiency. However, capturing intricate physical correlations from extensive and varying geometries while
balancing large-scale discretization and computational costs remains a significant challenge. To address these
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issues, we propose AeroGTO, an efficient graph-transformer operator designed specifically for learning large-
scale aerodynamics in engineering applications. AeroGTO combines local feature extraction through message
passing and global correlation capturing via projection-inspired attention, employing a frequency-enhanced
graph neural network augmented with k-nearest neighbors to handle three-dimensional (3D) irregular
geometries. Moreover, the transformer architecture adeptly manages multi-level dependencies with only linear
complexity concerning the number of mesh points, enabling fast inference of the model. Given a car's 3D mesh,
AeroGTO accurately predicts surface pressure and estimates drag. In comparisons with five advanced models,
AeroGTO is extensively tested on two industry-standard benchmarks, Ahmed-Body and DrivAerNet, achieving
a 7.36% improvement in surface pressure prediction and a 10.71% boost in drag coefficient estimation, with
fewer FLOPs and only 1% of the parameters used by the prior leading method.

E7-2 Learning stochastic dynamics from snapshots through regularized unbalanced optimal transport
TIRER, ALK

#E: Reconstructing dynamics using samples from sparsely time-resolved snapshots is an important problem
in both natural sciences and machine learning. Here, we introduce a new deep learning approach for solving
regularized unbalanced optimal transport (RUOT) and inferring continuous unbalanced stochastic dynamics
from observed snapshots. Based on the RUOT form, our method models these dynamics without requiring prior
knowledge of growth and death processes or additional information, allowing them to be learnt directly from
data. Theoretically, we explore the connections between the RUOT and Schrédinger bridge problem and discuss
the key challenges and potential solutions. The effectiveness of our method is demonstrated with a synthetic
gene regulatory network. Compared with other methods, our approach accurately identifies growth and
transition patterns, eliminates false transitions, and constructs the Waddington developmental landscape. This

paper is accepted in ICLR 2025 as an oral presentation.

E7-3 Predicting Dynamical Systems across Environments via Diffusive Model Weight Generation

THEE, TEHERF

$E: Data-driven methods offer an effective equation-free solution for predicting physical dynamics.
However, the same physical system can exhibit significantly different dynamic behaviors in various
environments. This causes prediction functions trained for specific environments to fail when transferred to
unseen environments. Therefore, cross-environment prediction requires modeling the dynamic functions of
different environments. In this work, we propose a model weight generation method, \texttt {EnvAd-Diff} .
\texttt{EnvAd-Diff} operates in the weight space of the dynamic function, generating suitable weights from
scratch based on environmental condition for zero-shot prediction. Specifically, we first train expert prediction
functions on dynamic trajectories from a limited set of visible environments to create a model zoo, thereby
constructing sample pairs of prediction function weights and their corresponding environments. Subsequently,
we train a latent space diffusion model conditioned on the environment to model the joint distribution of weights
and environments. Considering the lack of environmental prior knowledge in real-world scenarios, we propose a

physics-informed surrogate label to distinguish different environments. Generalization experiments across
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multiple systems demonstrate that a 1M parameter prediction function generated by \texttt {EnvAd-Diff}

outperforms a pre-trained 500M parameter foundation model.
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